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Abstract The traditional crop disease diagnosis process, relying on expert visual observation, is costly, time-consuming, and
prone to human error. Though Convolutional Neural Network (CNN) offers promising alternatives, it suffers from high resource
demands, making them inaccessible to farmers. Lightweight models that can work on resource-restricted devices without network
access are needed to address this issue. In this perspective, we propose a solution that leverages Post-Training Quantization (PTQ)
to convert high-precision models into lower-precision ones while preserving similar features. While quantization is a promising
method for building lightweight CNN models for crop disease detection, the quantized models’ quality needs to be improved. To
overcome this problem, we propose a PTQ method called Similarity-Preserving Quantization (SPQ), which ensures equivalent
activation patterns for similar crop images in both original and quantized models. Experimental evaluation applying SPQ to
MobileNetV2 showed that the proposed method improved about 30% of throughput while keeping detection performance.
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1. Introduction
Crop diseases pose a formidable challenge to global food secu-

rity, causing substantial production and economic losses, estimated
at $220 billion annually by the United Nations Food and Agriculture
Organization (FAO) [5]. These diseases contribute to insufficient hu-
man food supply and disrupt farmers’ income-generating activities.
Maize, one of the dominant food crops, is particularly susceptible to
various diseases despite its global yield of $1.2 billion in 2020, with
a productivity of 6.0 t/ha [6]. Conventional crop disease diagnosis
methods rely on visual inspection by experts, utilizing their in-depth
knowledge of crop diseases and their symptoms. This process is
time-consuming, expensive, and prone to human error due to sub-
jective perception. The advent of Convolutional Neural Networks
(CNN), particularly in image processing techniques, has revolution-
ized precision agriculture, labor costs, and high accuracy [21].

Previous studies, such as Zhang et al. [33], have proposed im-
proved deep CNN for crop disease detection. Besides, these models
are computationally expensive and require significant memory due
to over-parameterization, a common characteristic of deep neural
networks [3]. This imposes high computational and memory de-
mands for inference, making these solutions less accessible to farm-
ers. Moreover, to address the network connectivity issues in remote
cultivation areas, deploying these models on resource-constrained
devices is essential for broader adoption. To address these chal-
lenges, we develop a lightweight object detection neural network
model designed explicitly to detect crop diseases.

This applies Post-Training Quantization (PTQ) [8] to reduce a
neural network model’s memory and computational requirements.
PTQ is widely regarded as one of the most efficient compression
methods practically, benefitting from its data privacy and low com-
putational costs. Emerging as a promising solution to resource
limitations, PTQ enables deploying resource-efficient CNN for crop
disease detection. Unlike traditional quantization requiring exten-
sive calibration data and retraining, PTQ minimizes computational
overhead by bypassing iterative fine-tuning. This efficiency gain,

however, may lead to a minor trade-off in accuracy compared to
full-precision models.

Recent research efforts have addressed this trade-off between
accuracy and efficiency in PTQ. For instance, Nagel et al. [15] intro-
duced soft quantization with learnable parameters by constructing
new optimization functions based on second-order Taylor expansions
of the loss functions before and after quantization. This approach
effectively balances model accuracy and efficiency. Li et al. [12]
proposed a block-by-block reconstruction method instead of the tra-
ditional layer-by-layer approach and utilized diagonal Fisher matri-
ces to approximate the Hessian matrix, conserving more information
during quantization. This strategy further improved quantization ac-
curacy without compromising efficiency. Wei et al. [31] discovered
that randomly disabling a subset of activation quantization elements
can smooth the loss surface of the quantization weights, leading to
improved accuracy. Though PTQ has been studied and improved,
these existing methods have yet to consider pairwise activation sim-
ilarities between the full-precision and quantized models.

This presents a quantization reconstruction method called SPQ
(Similarity-Preserving Quantization) that preserves pairwise activa-
tion similarities between input pairs in the quantized model rather
than directly mimicking the representations of the full-precision
models. In summary, the main contributions of this method are
three-fold:

(1) SPQ: We propose a new method focusing on preserving pair-
wise activation similarities between input pairs in the quantized
model and full-precision representation.

(2) Loss Function: We apply a reconstruction error for preserv-
ing layer/block similarity between full-precision and quantized
models to object detection neural network architectures.

(3) Validation: We validate that SPQ enhances quantized network
calibration outcomes and offers a valuable adjunct to established
PTQ techniques.
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2. Related Works
This section analyzes combinations of quantization techniques

for enhancing resource-constrained disease detection applications.
2.1 Crop Disease Detection
Current techniques in precision agriculture are commonly pre-

ceded by analyzing the images captured by devices and sensors.
These images are then used to detect crop diseases. The problem
of crop disease detection has been addressed in numerous studies.
However, most of them focused only on the problem of classifying
foliar diseases, such as the method by k-means clustering and deep
learning to detect orange diseases and predict their names from im-
age [9]. Their architecture is designed based on GoogLeNet’s [20]
inception networks and AlexNet [11] for identifying and recognizing
apple leaf diseases as proposed by Liu et al [13]. A related work
proposed a method based on an improved VGG-16 [24] network
to identify apple leaf diseases [32]. Unlike these works, we apply
object detection networks to detect crop diseases on plant leaves.

2.2 Quantization
Quantization of neural networks has been studied for a while,

and there are numerous methods [8], [12], [16], [31]; all of them are
based on following equation;

wq = 𝑄𝑢𝑎𝑛𝑡 (𝑤), (1)

𝑄𝑢𝑎𝑛𝑡 (𝑤) = 𝑐𝑙𝑎𝑚𝑝

( ⌊𝑤
𝑆

⌉
+ 𝑍; 0, 2n − 1

)
, (2)

𝑆 =
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

2n − 1
, (3)

where S denotes the scaling factor to convert the range of w to
n bit-width, and ⌊.⌉ is the round-to-nearest. The clamp() function
restricts a given value between an upper and lower bound. While the
wq is quantized weights as outputs of a quantization function Quant()
similarity from [17]. The 𝑍 is used to decide which quantized value
zero is mapped to.

In contrast, the dequantization integer value represents w′ ∈ R
obtained by.

w′ = wq (𝑆 − 𝑍) (4)

The activation values quantization procedure is analogous to the
weight values quantization, except that the minimum and maximum
values are determined by analyzing activations from a limited cali-
bration data set and employing a moving average.

2.3 Post-Training Quantization
Quantization is a powerful technique for compressing neural net-

works, enabling their deployment on resource-constrained devices,
by applying Eq. 2. Two primary quantization methodologies exist
Quantization-Aware Training (QAT) and Post-Training Quantization
(PTQ). QAT [4] [8] [23] incorporates quantization into the network
training phase, while PTQ [17] applies quantization after training
completion. PTQ offers significant computational advantages, mak-
ing it the preferred choice for network deployment. The primary
objective of PTQ is to determine the quantization parameters for
weights and activations in each layer. Despite incorporating fine-
tuning during quantization, these PTQ methods remain distinct from
QAT. QAT employs the entire labeled training dataset to adjust the
model’s weights, while PTQ solely optimizes the quantization pa-
rameters using a subset of unlabeled data, making it efficient. Post-
Training Quantization (PTQ) has emerged as a promising solution
to address these challenges, enabling the deployment of CNN with
significantly reduced memory footprint and computational complex-
ity. Traditional quantization methods, such as full-precision training
followed by quantization, often require large amounts of calibra-
tion data to fine-tune the quantized model, resulting in substantial

computational overhead. In contrast, PTQ eliminates the need for
iterative quantization training, significantly reducing computational
costs and enabling efficient model deployment. However, This ef-
ficiency often comes at the partial sacrifice of accuracy due to the
reduction in precision, which can lead to information loss and a
diminished ability to represent fine-grained details in the model.

2.4 Quantization Reconstruction Error
This sacrifice of accuracy is associated with the error that oc-

curs when a neural network model is quantized, typically to lower-
precision numerical representations. This quantization error can
be controlled by quantization reconstruction error, which acts as
a regularizer that reduces generalization error by aligning corre-
sponding components of the quantized and full-precision mod-
els. AdaRound [15] analyzes that it is not advisable to round full
precision weight to its nearest fixed-point value and proposes a
novel rounding mechanism that assigns a continuous variable to
each weight value, determining whether it should be rounded up
or down rather than employing the traditional nearest rounding
method. BRECQ (Block REConstruction Quantization) [12] es-
tablishes block-wise reconstruction between the full-precision and
quantized network outputs, balancing cross-layer dependency and
generalization error. Additionally, BRECQ incorporates trainable
clipping for activations. Similar methods have been explored in
earlier works [2] [7]. AQuant [27] enhances activation quantization
strategy and overall quantization performance, although at the cost
of increased inference overhead. PD-Quant [14] addresses the dis-
crepancy between the distribution of calibration activations and their
corresponding real activations by proposing a technique for adjusting
the calibration activations accordingly. Previous research has inves-
tigated the influence of the calibration dataset on the performance
of quantized models [7]. Besides, the study [1] has explored the
reconstruction of features by calculating the feature output distance
between quantized and full-precision models, making the quantized
model mimic the full-precision model. In contrast to the previous
method, in SPQ, the quantized model is not required to mimic the
representation space of the full-precision but rather to preserve the
pairwise similarities in its own representation space.

3. Methodology
The central concept of the proposed method is exploring impor-

tant information in the activation map of the full-precision model and
transferring this vital information into the quantized model. More-
over, we set 𝑍 equal to zero to eliminate the zero-point offset in
Eq. 2 and Eq. 4; this method simplifies the accumulation operation
and reduces computational overhead. However, this simplification
comes at the cost of a restricted mapping between the integer and
floating-point domains. While suitable for one-tailed distributions
like ReLU activations. As claimed by Nagel et al. [17].

This uses a different method to reconstruct each quantized model
by layer or block named Block Similarity-Preserving for Post-
Training Quantization (SPQ). This method is inspired from [12],
[25]. Tung et al. [25] apply similarity preservation at the batch level,
focusing primarily on the similarity of the last convolution layers,
while SPQ focuses on intermediate blocks. While Li et al. [12]
focusd on applying Fisher information, SPQ focuses on similarity-
preservation instead.

3.1 Overview of SPQ
Figure 1 shows the overall procedure of the proposed method.

SPQ is a technique for reconstructing a quantized neural network
model using knowledge from a full-precision model. Unlike the
BRECQ [12] and QDrop [29], reconstruction methods match output
values or class probabilities, eliminating the difference in activation
output. SPQ aims to preserve the similarity in the relationships
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Fig. 1: Overview of the proposed SPQ. A pipeline overview of the proposed method is applied to find activation scaling factors (𝑆𝑎) to quantize
the activation. Yellow and green rectangles denote the quantized and full-precision layer/block, respectively. L𝑆𝑃 is similarity-preserving
quantization reconstruction loss that can be combined with different loss functions.

between activations in the full-precision and quantized. Such that
input pairs’ samples and their corresponding relations across the fea-
ture space that produce similar or dissimilar activations in the full-
precision and the quantized model are maintained. In the context
of quantization reconstruction error, we hypothesize that aligning
the activation patterns produced by the quantized model with those
generated by the full-precision model for highly similar input pairs,
as measured by a chosen similarity metric, can yield benefits for
quantization reconstruction error. Moreover, we focus on integrat-
ing similar information into constructing a new data representation
in a quantized model, significantly improving quantization recon-
struction error tasks. More importantly, the proposed idea can be
readily applied to other post-training quantization methods such as
BRECQ [12] and PD-Quant [14]. Furthermore, we aim to preserve
the original data learning similarity information from the full preci-
sion model. To this end, we use the widely used spatial and channel
similarity activation map.

The following gives the formal explanation of SPQ. For a given
mini-batch of input pair samples, let the activation map generated
by the full-precision model 𝐹 (resp. the quantized model 𝑄) at
a specific layer or block 𝑙 as 𝐸

(𝑙)
𝐹

, 𝐸
(𝑙)
𝑄

∈ R(𝑏×𝑐×ℎ×𝑤) , where 𝑏

represents the batch size, 𝑐 signifies the number of output channels,
and ℎ and 𝑤 denote the spatial dimensions. We define quantization
reconstruction loss that penalizes differences in the 𝐿2-normalized
inner products of 𝐸 (𝑙)

𝐹
and 𝐸

(𝑙′ )
𝑄

. Suppose 𝑋 is either 𝐹 or 𝑄,

𝑍
(𝑙)
𝑋

=

𝑟

(
𝐸
(𝑙)
𝑋

)
· 𝑟

(
𝐸
(𝑙)
𝑋

)⊤
Γ

, (5)

where 𝑟 (·) is a reshape function of 𝐸 (𝑙)
𝑋

(detail will be in the sub-
sequence section), and Γ is the normalization factor. Intuitively,
entry (𝑖, 𝑗) in 𝑍

(𝑙)
𝑋

encodes the similarity of the activations at 𝑙

elicited by the 𝑖-th and 𝑗-th images in the mini-batch. We define the
similarity-preserving quantization reconstruction loss as follows:

L𝑆𝑃 (𝐹,𝑄) = 1
𝑏2

∑︁
(𝑙,𝑙′ ) ∈𝑘

𝑍 (𝑙)
𝐹

− 𝑍
(𝑙′ )⊤
𝑄

2

𝑓
, (6)

where 𝑘 collects the corresponding layer pairs (e.g., layer pair at the
end of the same block) and ∥·∥ 𝑓 is the Frobenius norm. Eq. 6 rep-
resents a summation, across all paired layers (𝑙, 𝑙′) ∈ 𝑘 , of the mean
squared element-wise difference between the Gramian matrices 𝑍 (𝑙)

𝐹

and 𝑍
(𝑙′ )
𝑄

of the full-precision and quantized model, respectively. Fi-
nally, the total loss for training the student network is defined as:

L = L𝐾𝐷 (𝑥, 𝛾(𝑦)) + 𝛽L𝑆𝑃 (𝐹,𝑄), (7)

where 𝛽 represents the regularization loss imposed on quantization
reconstruction loss, and L𝐾𝐷 is any Knowledge Distillation loss to
regularize the output probabilities of the quantized model.

3.2 Similarity-Preservation Strategy
SPQ reconstructs quantized features through pairwise similarity

across spatial, channel, and batch dimensions. This multi-level simi-
larity leverages fine-grained information for effective reconstruction.
Further details on this method are discussed in this section.

• Batch Similarity-Preservation: Semantically similar images
exhibit high pairwise similarity of activation maps, while dis-
similar images exhibit low pairwise similarity. This property
can be exploited during calibrating by measuring pairwise simi-
larities within the activation map of a batch of images obtained
from the full-precision model. These relationship similari-
ties among image batches can then be used to guide the cali-
bration of the quantized model. Batch similarity-preserving
is computed by re-shape function 𝑟batch : R(𝑏×𝑐ℎ𝑤) →
R(𝑏×(𝑐×ℎ×𝑤) ) . Therefore, 𝑍 (𝑙)

𝐹
, 𝑍

(𝑙)
𝑄

∈ R(𝑏×𝑏) .
• Spatial Similarity-Preservation: Unlike batch similarity, spa-

tial pairwise similarity measures the proximity between indi-
vidual pixels within an image based on pixel-wise correlation.
It computes at the image-level by 𝑟spatial : R(𝑏×𝑐×ℎ×𝑤) →
R(𝑏×(ℎ𝑤)×𝑐) . Therefore, 𝑍 (𝑙)

𝐹
, 𝑍

(𝑙)
𝑄

∈ R(𝑏×(ℎ𝑤)×(ℎ𝑤) ) .
• Channel Similarity-Preservation: Unlike spatial similarity,

it reshapes features and calculates similarity across chan-
nels, resulting in a different output size. A 1×1 convolu-
tion ensures compatible channel dimensions before reshap-
ing by 𝑟channel : R(𝑏×𝑐×ℎ×𝑤) → R(𝑏×𝑐×(ℎ𝑤) ) . Therefore,
𝑍
(𝑙)
𝐹

, 𝑍
(𝑙)
𝑄

∈ R(𝑏×𝑐×𝑐) .
• Spatial and Channel Similarity-Preservation: It is achieved

by fusing spatial and channel pairwise similarities. We com-
pute the quantization reconstruction loss (L𝑆𝑃) by Eq. 7 using
transformed activation maps from both types of similarities and
linearly combine their individual losses.

3.3 Computational Efficiency
We use post-quantization Bit OPerations (BOPs) to evaluate

accuracy-power trade-offs at different bit-width. Unlike prior
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Table 1: Comparison of Faster-RCNN [19] between Full-Precision
(FP-32) and Quantized models (W8A8 and W6A6). Based on Mo-
bileNetV2 [22] backbone on the validation dataset. Best value in
each row is bold-faced and the numbers in braces show the improve-
ment from the full-precision model. Note that the Inference and
Throughput were measured using an image with shape [3, 4032,
3024] on the CPU.

FP-32 W8A8 W6A6

Inference* [ms] 1,373.52 1,029.34 (↑ 1.33×) 1,023.23 (↑ 1.34×)
Throughput* 0.73 0.97 (↑ 1.33×) 0.98 (↑ 1.34×)
Model Memory [MiB] 346.94 111.26 (↓ 3.12×) 91.63 (↓ 3.78×)
Top-1 mAP@50 [%] 37.10 37.11 (↑ +0.01) 35.08 (↓ −2.02)
Top-1 F1-Score [%] 97.46 97.47 (↑ +0.01) 95.43 (↓ −2.03)
Bit Operations [T] 26.80 1.67 (↑ 16.05×) 0.94(↑ 28.51×)

works [26], BOPs do not guide our quantization, but measure its
efficiency by Eq. 8, following [28].

BOPs = 𝑤𝑏𝑎𝑏MAC, (8)
MAC = 𝑐𝑖𝑏ℎ𝑜𝑤𝑜𝑘ℎ𝑘𝑤𝑐𝑜, (9)

where 𝑤𝑏 and 𝑎𝑏 are the bit-width of weights and activations, MAC
(Multiply and ACcumulate) operations (Eq. 9), 𝑐𝑖 and 𝑐𝑜 are the
input and output channel size, ℎ𝑜 and 𝑤𝑜 are the output height and
width, 𝑘ℎ and 𝑘𝑤 are the kernel height and width, and 𝑏 is the batch
size, respectively.

4. Experimental Evaluation
This section presents a comprehensive evaluation of the perfor-

mance of the proposed algorithm. We begin by outlining the exper-
imental setup and implementation details. Subsequently, we com-
pare our quantized method, evaluated across various low-bit-width
configurations, against the current state-of-the-art in our proposed
dataset of crop disease. Finally, we conduct systematic ablation stud-
ies to gain deeper insights into the key properties and contributions
of our method.

4.1 Implementation Setup
Here, we analyzed inference time for an image with a dimension

of 4032×3024×3 on NVIDIA RTX A6000 GPU and CPU 2.3GHz
8-Core Intel Core i9 to demonstrate that models quantized by the
proposed method can reduce the model memory and accelerate in-
ference with negligible accuracy drop. We tested this technique on
the backbone of Faster R-CNN [19] under MobileNetV2 [22]. The
experiments were implemented using the PyTorch [18] framework.
After quantizing the model, it was reconstructed block by block with
the following setting to recover the accuracy. The weight rounding
scheme adopted in our work adhered to the method specified in [15].
For other hyperparameters related to the reconstruction process, such
as the number of iterations and loss ratios, we maintained consis-
tency with those reported in QDrop [29] and BRECQ [12]. Notably,
we deviated by employing an 8-bit representation for the output of
the first and last layers in all experiments, which positively impacted
accuracy. Batch sizes 16 and 10 epochs, Adam optimizer [10], and
the initial learning rate 0.003 were used.

4.2 Settings
Dataset: We selected Maize leaves from three disease classes;

namely, Northern corn Leaf Blight (NLB), Fall ArmyWorm (FAW)
and Maize Streak Virus (MSV). The dataset comprises four different
datasets; more than 18,222 images annotated with 105,735 NLB
lesions were collected in the USA [30]. Image datasets were col-
lected across three different Sub-Saharan African countries (Ghana,
Uganda, and Namibia) in the field with two different classes: FAW
and MSV. The dataset was split into four sets: train, calibration,

Fig. 2: Sensitivity of 𝛽 hyper-parameter on Faster-RCNN [19] with
MobileNetV2 [22] backbone on validation set

validation, and test in the proportion of 70 : 20 : 5 : 5. The train,
validation, and test sets were used to train and test the full precision
model. The calibration and test sets were applied to recalibrate and
test the quantized model.

Metrics: We measured the network efficiency in four dimen-
sions; Memory, Inference, Bit Operations, and Accuracy. In terms
of Accuracy, F1-Score and mean Average Precision (mAP) were
used. F1-Score is the harmonic mean of precision and recall for the
optimized confidence score threshold. In contrast, mAP summa-
rizes the global trade-off between precision and recall. We applied
mAP@50 considering the nature of some crop diseases being de-
tected, which exhibit distinct and well-defined symptoms, making
them easier to detect. However, certain diseases have more diffuse
symptoms and vary in appearance, making detecting them challeng-
ing. The Inference is the time needed to make a prediction, and the
short time indicates that the model runs faster. The Memory mea-
sures the memory footprint needed to run the model, and the smaller
memory size consumption is better, which leads to a better memory
footprint. To quantify the computational efficiency, we measured
Bit OPerations (BOPs) for a single forward pass of the model using
the equation Eq. 8.

4.3 Effects of Hyper-Parameters
Note that 𝛽 is a weight parameter for balancing the regulariza-

tion loss imposed on quantization reconstruction loss on similarity-
preserving loss in Eq. 7. From Fig. 2, we find the quantized model
achieves the best performance when 𝛽 is 1,000. In other words, the
larger 𝛽 is, the more quantized model will learn from the similar
activation in the full-precision model. That is to say, the greater
𝛽 is, the greater the effect of similarity preservation loss is. We
set 𝛽 to 0, 10, 100, and 1,000. We found that the similarity-
preservation brought about an improvement of 0.93% on Top-1(F1-
Score). When the 𝛽 was equal to 1,000, the quantized model did not
improve on Top-1 (mAP@50). When 𝛽 gradually decreased from
10 to 0 (𝛽 = 0, without similarity-preserving), the improvement
of F1-Score and mAP@50 results became smaller and smaller as
33.04% and 93.01% and 29.04%, 41.07%, respectively for Top-1
(mAP@50) and Top-1 (F1-Score). This proves that the introduc-
tion of similarity-preserving can learn the useful feature information
between full-precision and quantized model to improve the quanti-
zation reconstruction error results. The overall results are in Fig. 2.
It shows that the increase of 𝛽 can improve the disease detection
results, reflecting the quantized model’s good generalization ability.
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Table 2: Effect of Quantization Faster-RCNN [19] with Mo-
bileNetV2 [22] backbone on validation dataset. The best scores
in each row are bold-faced.

Top-1 mAP@50 in [%] Top-1 F1-Score in [%]

FP-32 W8A8 W6A6 FP-32 W8A8 W6A6

BRECQ [12] 37.10 37.10 34.79 97.46 97.47 95.29
QDrop [29] 37.10 37.08 34.11 97.46 97.44 95.11
SPQ (Ours) 37.10 37.11 35.08 97.46 97.47 95.43

4.4 Results
Table 1 shows the results of the detection model with the back-

bone on different quantizer bit-width. Before being quantized, the
model achieved 37.10% for Top-1 (mAP@50), and 97.46% for Top-
1 (F1-Score), on MobileNetV2 [22] backbone. The results show
that full precision (FP-32) required significant inference time and
memory footprint. When the quantizer bit-width was set to W8A8
(Weight bit = 8 and Activation bit = 8), the model outperformed the
full-precision by 0.01% in Top-1 (mAP@50) and Top-1 (F1-Score)
respectively. However, we continued seeing significant improve-
ment in model efficiency with a good balance between F1-Score
and detector. We reduced the inference and throughput by 1.33
times faster and Bit Operations to 1.67 value. The model memory
footprint improved by 3.78 times smaller, and the Bit Operations
improved more than 16.05 times compared to FP-32, which is an
outstanding achievement even though increasing the accuracy in the
MobileNetV2 backbone. The results show that the models effec-
tively balanced accuracy, speed, and memory footprint even after
quantizer bit-widths reached 8-bit.

When the quantizer bit-width reached W6A6, the model’s ef-
ficiency was significantly increased and lightweight, which can be
confirmed by the Bit Operations reaching the lowest value of 0.94,
making the model 28.51 times efficiency. However, the accuracy sig-
nificantly dropped, achieving 35.08% Top-1(mAP@50) and 95.43%
for Top-1(F1-Score), respectively, making the model slightly lose
balance between accuracy and efficiency. Nevertheless, the results
show that the models achieved an effective improvement of speed
and memory footprint, leading the model on both quantizer bit-
width suitable for disease detection despite a decrease of accuracy
by 2.02% and 2.03% Top-1(mAP@50) and Top-1(F1-Score) respec-
tively.

4.5 Performance Analysis
We extensively compared SPQ with various PTQ algorithms

across various bit-width configurations without misleading QAT
comparisons due to their inherent training differences. Notably,
SPQ consistently outperformed other methods, particularly at low
bit-widths. Encouraging only the quantization to mimic different as-
pects of the full precision representation space to optimize activation
scaling factors proved to be insufficient for low-bit scenarios. There-
fore, SPQ focuses on integrating similar information into construct-
ing a new data representation in a quantized model, significantly
improving the optimization of rounding values and activation scal-
ing factors. We benchmark against QDrop [29] and BRECQ [12],
the strongest-performing PTQ method. To ensure consistency, we
applied Spatial and Channel Similarity-Preservation as described in
the methodology section. All experiments performed include this
method.

Table 2 summarizes the results respectively for Top-1 (mAP@50)
and Top-1 (F1-Score). The table results demonstrate substantial
improvements achieved by SPQ compared to strong PTQ base-
lines. While gains at W8A8 were modest, they became more
pronounced at lower bit-widths. For instance, SPQ outperformed
QDrop and BRECQ at W8A8 settings quantization, by improving

Table 3: Loss function comparison. LKD loss only, LSP only, and
both L𝐾𝐷 + L𝑆𝑃 are compared.

Top-1 mAP@50 in [%] Top-1 F1-Score in [%]

W8A8 W6A6 W8A8 W6A6

L𝐾𝐷 29.04 29.04 39.05 41.07
L𝑆𝑃 32.01 30.03 42.01 44.00
L𝐾𝐷 + L𝑆𝑃 37.11 35.08 97.47 95.43

MobileNetV2 [22] by 0.01% and 0.03% for Top-1 (mAP@50), re-
spectively. The same performance is noticed in W6A6 where SPQ
also outperformed QDrop and BRECQ by 0.29% and 0.97% for Top-
1 (mAP@50), respectively. The same performance trend does not
change the Top-1 (F1-Score) metric. The SPQ surpasses QDrop and
BRECQ at W8A8 settings quantization, by enhancing MobileNetV2
by 0.01% and 0.03%, respectively. Furthermore, we noted that per-
formance in W6A6 where SPQ outperforms QDrop and BRECQ by
0.29% and 0.97% , respectively. This underlines the significance of
SPQ’s optimization strategy. Moreover, SPQ requires no additional
computation for inference after optimization, ensuring efficiency.
Additionally, SPQ focuses on being hardware-friendly by allowing
bit homogeneity through bit-width hyper-parameters. Like earlier
PTQ work, we maintain the first and last layers at 8 bits. While some
previous works reach higher accuracy with an additional 8-bit first-
layer output, we experiment with these settings to validate SPQ’s
efficacy.

4.6 Ablation Study
We conducted experiments of quantization reconstruction er-

ror based only on similarity-preserving loss in Eq. 7 using Mo-
bileNetV2 [22]. We applied W8A8 and W6A6 bit quantization for
all layers except for the first and the last layer. From Tab 3, we can
observe that Similarity-Preserving loss (L𝑆𝑃) has stable accuracy
improvement at all bits. This result implies that the generalization
of quantization error in L𝑆𝑃 consistently outperformed the L𝐾𝐷 in
all settings.

5. Conclusion
This revealed that encouraging only the quantized model to

mimic different aspects of the full precision representation space
to optimize activation scaling factors proved insufficient for low-bit
scenarios and complex datasets. Meanwhile, we observed that cap-
turing global structure in activation map information and preserving
the original pairwise similarities between the activation map points
in the full model and the quantized model in the embedding space is
apromising method . The proposed technique is particularly suitable
for problems sensitive to sample similarity, such as classification,
detection, anddrug similarity in recommender systems, and disease
detection in healthcare informatics. The proposed method can im-
prove the performance quantization significantly. This is because
our method is based on similarity, while other methods are based
on Euclidean distance, which is unsuitable for complex tasks such
as detection. Furthermore, our hardware-friendly method allows bit
homogeneity through bit-width hyper-parameters.

Future work could explore how to improve our method, such as
combining our method with self-supervised learning. We will also
consider how to apply our method to model pruning.
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